International Journal of Engineering Sciences & Research Technology

(A Peer Reviewed Online Journal) Impact Factor: 5.164

Chief Editor Dr. J.B. Helonde **Executive Editor** Mr. Somil Mayur Shah

IJESRT

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

BI-IDEALS AND QUASI-IDEALS OF BCK-ALGEBRA

S. Vaira Lakshmi*¹ & S. Jayalakshmi²

*1PG and Research Department of Mathematics, Sri Parasakthi College for Women Courtallam-627802, Manonmaniam Sundaranar University, Abishekapatti-627012, Tamilnadu, India
²Associate Professor, Department of Mathematics, Sri Parasakthi College for Women, Courtallam-627802, Tamilnadu, India

DOI: 10.29121/ijesrt.v11.i1.2022.2

ABSTRACT

In this paper, we introduce the concept of Bi-ideals and Qusai-ideals of BCK-algebra. Some of its effects with examples were also given.

KEYWORDS: Bck-algebra, Bi-ideal, Qusai-ideal.

1. INTRODUCTION

In 1966, Y. Imai and K. Iseki [3] introduced a new notation, called BCK-algebra.

This notion is originated from two different ways: One of them is based on set theory; another is from classical and non-classical propositional calculi. As is well known, there is a close relationship between the notions of the set difference in set theory and the implication functor in logical systems. Y. B. Jun [1] deal with various results on ideals of BCK algebras. The impression of bi-ideal for semi groups was interrupted by Good and Hughes. T. Tamizh Chelvam et al.[2] innovated certain concepts on bi-ideals of near rings. I. Yakabe [4] constituted several properties on Qusai ideals in near rings.

2. PRELIMINARIES

In this section, we reproduce some basic definitions which are essential for the development of the paper.

Definition: 2.1

Let *X* be a set with a binary operation * and a constant 0. Then (*X*, *, 0) of type (2, 0) is called a **BCK-algebra** if it satisfies the following conditions:

i. ((x * y) * (x * z)) * (z * y) = 0

ii. (x * (x * y)) * y = 0

iii. x * x = 0

iv. 0 * x = 0

v. x * y = 0 and $y * x = 0 \Rightarrow x = y \forall x, y \in X$.

We can define a partial ordering " \leq " on X by $x \leq y$ if and only if x * y = 0. In any BCK-algebra X, the following hold:

i. x * 0 = 0

htytp: // www.ijesrt.com[©] International Journal of Engineering Sciences & Research Technology
[13]

ii. $x * y \le x$

iii. (x * y) * z = (x * z) * y

iv. $(x * z) * (y * z) \le x * y$

v. $x \le y$ implies $x * z \le y * z$ and $z * y \le z * x$.

Example: 2.2

Let $X = \{0, a, b, c, d\}$ be a BCK-algebra with the following cayley table:

*	0	а	b	С	d
0	0	0	0	0	0
а	а	0	а	0	0
b	b	b	0	b	0
С	С	а	С	0	а
d	d	d	d	d	0

Definition: 2.3

A BCK-algebra X is said to be **Positive implicative** if (x * z) * (y * z) = (x * y) * z for all x, y, $z \in X$.

Definition: 2.4

A non-empty subset *S* of a BCK-algebra *X* is called a **BCK-Subalgebra** of *X* if $x * y \in S$ whenever $x, y \in S$.

Definition: 2.5

A non-empty subset *I* of a BCK-algebra *X* is called an **Ideal** of *X* if i. $0 \in I$ ii. $x * y \in I$ and $y \in I$ imply $x \in I$.

For any $a \in X$ let (a) denote the set of all elements of X which are less than or equal to a, i.e., $(a) = \{x \in X | x \le a\}$. Note that $0 \in (a)$, and (a) is not an ideal of X.

Definition: 2.6

Let *A* and *B* be two non-empty subsets of *X*. We shall define two types of products: $AB = \{ \sum a_i b_i | a_i \in A, b_i \in B \}$ and $A * B = \{ \sum (a_i (a' + b_i) - a_i a_i') | a_i, a_i' \in A, b_i \in B \}$, Where \sum , denotes all possible additions of finite terms. In case that $B = \{b\}$, we denote *AB* by *Ab*.

Definition: 2.7

A subgroup *S* of *X* is called an **X-subgroup** of *X* if $XS \subseteq S$.

Definition: 2.8

An element $a \in X$ is called an **idempotent** if $a^2 = a$.

Definition: 2.9

A subgroup *M* of a BCK-algebra *X* is called a **BCK-subalgebra** if $MM \subseteq M$.

Defintion: 2.10

An element *a* in a BCK-algebra *X* is said to be **Regular** if $a \in aXa$. A BCK-algebra *X* is said to be **Regular** if every element in *X* is regular, i.e., for every $a \in X$, there exists a

htytp: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

[Lakshmi et al., 11(1): January, 2022]

IC[™] Value: 3.00

 $b \in X$ such that a = aba.

Defintion: 2.11

Let A be a set. $M \subseteq (A)$ (where (A) denote the power set of A) is said to be a

Moore-system on $A \Leftrightarrow$

i. $A \subseteq M$. ii. For any set I, $(\forall i \in I: M_i \in M) \Rightarrow \bigcap_{i \in I} M_i \in M$.

3. BI-IDEAL OF BCK-ALGEBRA:

In this section, we introduced the concept of Bi-ideal of BCK-algebra and discuss some of its effects.

Definition: 3.1

Let *B* is a subalgebra of *X* and $BXB \cap (BX) * B \subseteq B$ is called a **Bi-ideal** of BCK- algebra. In case of zero symmetric $BXB \subseteq B$.

Example: 3.2

Let $X = \{0, a, b, c, d\}$ be a BCK-algebra with the following cayley table:

*	0	а	b	С	d
0	0	0	0	0	0
а	а	0	0	0	0
b	b	а	0	а	0
С	С	С	С	0	0
d	d	d	d	d	0

Clearly, $B = \{0, a, b\}$ is a bi-ideal of BCK-algebra X.

Proposition: 3.3

The set of all bi-ideals of a BCK-algebra *X* form a Moore system on *X*. **Proof:**

Let $\{B_i\} \in I$ be a set of bi-ideals in *X*. Let *B*

 $= \bigcap_{i \in I} B_i$

Then $BXB \cap (BX) * B \subseteq B_i XB_i \cap (B_i X) * B_i \subseteq B_i$ for every $i \in I$. Therefore B is a biideal of X.

Proposition: 3.4

If *B* be a bi-ideal of a BCK-algebra *X* and *S* is a BCK-subalgebra of *X*, then $B \cap S$ is a bi-ideal of *S*. **Proof:**

Since *B* is a bi-ideal of *X*, $BXB \cap (BX) * B \subseteq B$. Let $C = B \cap S$. Now $CSC \cap (CS) * C = (B \cap S)(B \cap S) \cap ((B \cap S)S) * (B \cap S)$ $\subseteq BSB \cap S \cap (BS) * B$

× ×

 $\subseteq B \cap S = C$

 $CSC \cap (CS) * C \subseteq C$. Hence C is a bi-ideal of S.

Hence $B \cap S$ is a bi-ideal of S.

htytp: // <u>www.ijesrt.com</u>© *International Journal of Engineering Sciences & Research Technology* [15]

 \odot

(cc

ISSN: 2277-9655

CODEN: IJESS7

Impact Factor: 5.164

ISSN: 2277-9655 Impact Factor: 5.164 CODEN: IJESS7

Proposition: 3.5

Let *X* be a zero-symmetric BCK-algebra. A subalgebra *B* of *X* is a bi-ideal if and only if $BXB \subseteq B$. **Proof:**

For a subalgebra *B* of (X, *, 0), if $BXB \subseteq B$, then *B* is a bi-ideal of *X*.

Conversely,

If *B* is a bi-ideal, we have $BXB \cap (BX) * B \subseteq B$. To prove $BXB \subseteq B$. Since *X* is a zero-symmetric, $XB \subseteq X * B$. We get $BXB = BXB \cap BXB$ $\subseteq BXB \cap (BX) * B$

B i.e., $BXB \subseteq B$.

Proposition: 3.6

Let *X* be a zero-symmetric BCK-algebra. If *B* is a bi-ideal of *X*, then Bx and x'B are bi-ideals of *X* where $x, x \in X$ and x' is distributive element in *X*. **Proof:**

Clearly, Bx is a subalgebra of (X, *, 0) and $Bx X Bx \subseteq B X Bx \subseteq Bx$.

We get Bx is a bi-ideal of X.

 \subset

Again x'B is a subalgebra. Since x' is distributive in X and

 $x'B X x'B \subseteq x'B X B \subseteq x'B$. Thus x'B is

a bi-ideal of X.

Therefore Bx and x'B are bi-ideals of X.

Corollary: 3.7

If *B* is a bi-ideal of a zero-symmetric BCK-algebra *X* and *b* is a distributive element in *X*, then *bBc* is a bi-ideal of *X*, where $c \in X$.

Proof:

Given b is a distributive element in X, we get bB is a bi-ideal of X.

Clearly, *bBc* is a subalgebra of (X, *, 0). To prove, *bBc* is a bi-ideal of *X*. Now *bBc X bBc* \subseteq *B X bBc*

 $\subseteq bBc$

Thus *bBc* is a bi-ideal of *X*.

4. QUSAI-IDEAL OF BCK-ALGEBRA:

In this section, we introduced the concept of Qusai-ideal of BCK-algebra and discuss some of its effects.

Definition: 4.1

A subalgebra Q of a BCK-algebra X is called a **qusai-left** (**qusai-right**) ideal of X if i. $0 \in Q$ ii. $x \in Q, y \in Q \Rightarrow y \land x \in Q$ $(x \land y \in Q)$

Q is called a **qusai-ideal** if it satisfies both qusai-left and qusai-right ideal. In case of zero symmetric, $QX \cap XQ \subseteq Q$.

htytp: // <u>www.ijesrt.com</u>© *International Journal of Engineering Sciences & Research Technology* [16]

ISSN: 2277-9655 Impact Factor: 5.164 CODEN: IJESS7

Example: 4.2

Let $X = \{0, a, b, c, d\}$ be a BCK-algebra with the following cayley table:

*	0	а	b	С	d
0	0	0	0	0	0
а	а	0	0	0	0
b	b	а	0	а	0
С	С	С	С	0	0
d	d	d	d	d	0

Clearly, $A = \{0, a, b, c\}$ be the qusai-ideal of a BCK-algebra X.

Proposition: 4.3

The set of all qusai-ideals of a BCK-algebra *X* forms a Moore-system on *X*. **Proof:**

Let $(\lambda \in \Lambda)$ be any set of quaii-ideals of *X*. Then $\bigcap_{\lambda \in \Lambda} Q_{\lambda}$ is clearly a subalgebra of (X, *, 0). Moreover, for every $(\mu \in \Lambda)$.

We have $D = (\bigcap_{\lambda \in \Lambda} Q_{\lambda}) X \cap X (\bigcap_{\lambda \in \Lambda} Q_{\lambda}) \cap X * (\bigcap_{\lambda \in \Lambda} Q_{\lambda}) (\bigcap_{\lambda \in \Lambda} Q_{\lambda} \subseteq Q_{\mu})$

 $\subseteq Q_{\mu} X \cap X Q_{\mu} \cap X * Q_{\mu}$ $\subseteq Q_{\mu}$

Hence $D \subseteq \bigcap_{\lambda \in \Lambda} Q_{\lambda}$, that is, $\bigcap_{\lambda \in \Lambda} Q_{\lambda}$ is a qusai-ideal of *X*.

Proposition: 4.4

The intersection of a qusai-ideal Q and a BCK-subalgebra M of a BCK-algebra X is a qusai-ideal of M. **Proof:**

Clearly, $Q \cap M$ is a subalgebra of (M, +).

Moreover, we have $(Q \cap M) \cap M(Q \cap M) \cap M * (Q \cap M)$

$$\subseteq (Q \cap M)M \cap M(Q \cap M) \\ \subseteq MM \subseteq M$$

and $(Q \cap M)M \cap M(Q \cap M) \cap M * (Q \cap M)$

$$\subseteq QX \cap XQ \cap X * Q$$

 $\subseteq Q$

These imply that $Q \cap M$ is a qusai-ideal of M.

Proposition: 4.5

Let X be a zero-symmetric BCK-algebra. Then a subalgebra Q of (X, *, 0) is a qusai- ideal of X if and only if $QX \cap X Q \subseteq Q$.

Proof:

We first remark that $X Q \subseteq X * Q$. In fact, for any elements x of X and q of Q, we have xq = (0 + q) - x0. Since X is zero-symmetric. Hence $X Q \subseteq X * Q$.

htytp: // www.ijesrt.com@ International Journal of Engineering Sciences & Research Technology

[17]

 \odot

(cc)

ISSN: 2277-9655 Impact Factor: 5.164 CODEN: IJESS7

[Lakshmi *et al.*, 11(1): January, 2022] ICTM Value: 3.00

From this property, we have $QX \cap X \ Q \cap X * Q = QX \cap XQ$, by which this proposition is easily seen.

5. BI-IDEALS WHICH ARE ALSO QUSAI-IDEALS:

In this section, we discuss the relationship between a bi-ideals and a qusai-ideals in BCK-algebra.

Proposition: 5.1

Let *B* be a bi-ideal of a BCK-algebra *X*. If *B* is itself a regular BCK-algebra, then any bi-ideal of *B* is a bi-ideal of *X*.

Proof:

Let A be a bi-ideal of B.

Since *B* is regular, for $a \in A \subseteq B$, a = aba for some $b \in B$ and so $A \subseteq AB \cap BA$.

Thus $AXA \subseteq (AB)(BA)$

 $\subseteq A(BXB)A$

 $\subseteq ABA$

 $AXA \subseteq A$

i.e., A is a bi-ideal of X.

Proposition: 5.2

Let *X* be a BCK-algebra and *B* a bi-ideal of *X*. If elements of *B* are regular, then *B* is a qusai-ideal of *X*. **Proof:**

Let $x \in BX \cap XB$.

Then x = bn = n'b' for some $b, b' \in B$ and $n, n' \in X$.

Since B is regular, $b = bb_1b$ for some $b_1 \in B$. Hence $x = bn = (bb_1b)$ $= (bb_1)(bn)$ $= bb_1n'b' \in BXB \subseteq B$

i.e., $BX \cap XB \subseteq B$

Hence *B* is a qusai-ideal of *X*.

Corollary: 5.3

If *B* is a bi-ideal and a regular BCK-subalgebra of *X*, then any bi-ideal of *B* is a qusai- ideal of *X* as well as of *B*. If *Q* is a qusai-ideal of *X* which is itself regular, then any qusai- ideal of *Q* is also a qusai-ideal of *X*. **Proof:**

Let *B* is a bi-ideal of *X*. Let *A* be a bi-ideal of *B*.

Since *B* is regular subalgebra of *X*.

To prove *A* is a qusai-ideal of *X*.

i.e., To prove $AX \cap XA \subseteq A$.

Let $a \in A \subseteq B$, a = aba for some $b \in B$.

So $A \subseteq AB \cap BA \Rightarrow A \subseteq AB$ and $A \subseteq BA$.

htytp: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

Thus $AX \cap XA \subseteq (AB) \cap X(AB)$

 $\subseteq AB(X \cap X)BA$

 $\subseteq A(BXB)A$

 $\subseteq ABA \ \subseteq A$

Hence *A* is a qusai-ideal of *X*.

To prove A is a qusai-ideal of B.

i.e., To prove $AB \cap BA \subseteq A$. Already we know, A is a bi-ideal of B.

 $AB \cap BA = A(B \cap B)A$

 $= ABA \subseteq A$

 $AB \cap BA \subseteq A$.

Given $QX \cap XQ \subseteq Q$ and Q is regular. Let Q' be a qusai-ideal of Q. To prove Q' is a qusai-ideal of X.

i.e., To prove $Q'X \cap XQ' \subseteq Q'$.

Let $q' \in Q' \subseteq Q \Rightarrow q' = q'qq'$ for some $q \in Q$

So $Q' \subseteq QQ' \cap Q'Q \Rightarrow Q' \subseteq QQ'$ and $Q' \subseteq Q'Q$

Thus $Q'X \cap XQ' \subseteq (Q'Q) \cap X(QQ')$

 $= Q'(QX \cap XQ)Q'$

 $\subseteq Q'QQ'$

 $Q' \mathbf{X} \cap X Q' \subseteq Q'$

Hence Q' is a quali-ideal of X.

Corollary: 5.4

A subalgebra *M* of a regular BCK-algebra is a qusai-ideal if and only if *M* is a bi-ideal of *X*. **Proof:**

Assume that M is a quaii-ideal of X. To prove M is a bi-ideal of X.

Now $MXM \cap (MX) * M \subseteq M(X \cap X)M \cap (MX) * M$

 $\subseteq MX \cap XM \cap X * M \subseteq M$

Hence *M* is a bi-ideal of *X*.

Conversely,

htytp: // <u>www.ijesrt.com</u>© *International Journal of Engineering Sciences & Research Technology* [19]

Assume that *M* is a bi-ideal of *X*. To prove *M* is a qusai-ideal of *X*. Now $MX \cap XM \cap X * M \subseteq (X \cap X) \cap (MX) * M$

 $\subseteq MXM \cap (MX) \ast M \subseteq M$

Hence *M* is a qusai-ideal of *X*.

Corollary: 5.5

A subalgebra *M* of a regular BCK-algebra *X* is a qusai-ideal of *X* if and only if *M* satisfies the condition $MXM \subseteq M$.

Proof:

Assume that *M* is a qusai-ideal of *X*. To prove the condition $MXM \subseteq M$. Now $MXM \subseteq (X \cap X)$

 $\subseteq MX \cap XM \subseteq M$ Hence the condition $MXM \subseteq M$ is proved.

Conversely,

Assume that the condition $MXM \subseteq M$ is true. To prove M is a qusai-ideal of X. Now $MX \cap XM \subseteq (X \cap X)$

 $\subseteq MXM \subseteq M$

Hence M is a qusai-ideal of X.

Proposition: 5.6

Let *X* be a regular BCK-algebra in which idempotents commute. Then every qusai- ideal of *X* is idempotent. **Proof:**

Let *M* be qusai-ideal of *X* and $a \in M$. Since is a BCK-subalgebra, $M^2 \subseteq M$ and so we have only to prove that $M \subseteq M^2$. i.e., $a \in M^2$.

By the regularity of *X* we have a = axa.

Here *xa* is an idempotent and *xa* is in the center of *X* by [7] Theorem1. Using $MX^2M \subseteq MX \cap XM \subseteq M$ We get a = (ax)(xa) = (ax)(xa)a

 $=(ax^2a)\in (MX^2M)\subseteq M^2$

Proposition: 5.7

Let X be a BCK-algebra in which every quai-ideal is idempotent. Then, for left X- subalgebra L and right X-subalgebra R of X, $RL = R \cap L \subseteq LR$ is true.

Proof:

Let *A* and *B* are two qusai-ideals in *X*, then $A \cap B$ is also a qusai-ideal. By the idempotence of $A \cap B$ we have $A \cap B = (A \cap B)^2 \subseteq AB \cap BA$. On the otherhand $AB \cap BA \subseteq AX \cap XA \subseteq A$.

the other hand $AB | |BA \subseteq AX | |XA \subseteq A$.

Similarly $AB \cap BA \subseteq XB \cap BX \subseteq B$.

And so $A \cap B = AB \cap BA$.

htytp: // <u>www.ijesrt.com</u>© *International Journal of Engineering Sciences & Research Technology* [20]

ISSN: 2277-9655 Impact Factor: 5.164 CODEN: IJESS7

Now, let *L* be a left *X*-subalgebra and *R* be a right *X*-subalgebra of *X*. Since *X*- subalgebra are always qusaiideals, we have $R \cap L = RL \cap LR$, but $RL \subseteq R \cap L$ and so $RL = R \cap L \subseteq LR$.

ISSN: 2277-9655

CODEN: IJESS7

Impact Factor: 5.164

Proposition: 5.8

Let *R* and *L* be respectively right and left *X*- subalgebra of *X*. Then any subalgebra *B* of *X* such that $RL \subseteq B \subseteq R \cap L$ is a bi-ideal of *X*.

Proof:

For a subalgebra *B* of (*X*,* ,0) with $RL \subseteq B \subseteq R \cap L$.

We have $BXB \subseteq (R \cap L)(R \cap L)$

 $\subseteq RXL \subseteq RL \subseteq B$ and so *B* is a bi-ideal of *X*.

REFERENCES

- [1] Y. B. Jun, Some results on ideals of BCK algebras, Scientiae Mathematicae Japonicae Online, Vol.4 (2001), 411-414.
- [2] T. Tamizh Chelvam and N. Ganesan, On bi-ideals of near-rings, Indian J. pure appl.Math., 18 (11) (1987) 1002-1005.
- [3] Y. Imai and K. Iseki, On axiom systems of propositional calculi XIV, Proc. Japan Academy 42 (1966), 19-22.
- [4] I. Yakabe, Qusai-ideals in near rings, Math Rep. Kyuchu Univ 14 (1983), 41-46.
- [5] Sung Min Hong, Young Bae Jun and Mehmet Ali Ozturk, Generslizations of BCK-algebras, Science Mathematics Japonicae Online, Vol. 8, (2003), 549-557.
- [6] R. A. Borzooei and O. Zahiri, Prime ideals in BCI and BCK-Algebras, Annals of the University of Craiova, Mathematics and Computer Science Series, Vol. 39 (2), 2012, 266-276.
- [7] Murty, C.V. L. N., Generalized near-fields, Proc, Edin, Math, Soc, 27 (1984), 21-24.
- [8] T. Tamizh Chelvam and N. Ganesan, On minimal bi-ideals of near-rings, Journal of the Indian Math. Soc. 53 (1988) 161-166